4,523 research outputs found

    Mission strategy for cometary exploration in the 1980's

    Get PDF
    A sequence of ballistic intercept missions to comets is proposed. The mission set is composed of a well-known group of periodic comets whose physical properties are dissimilar. In addition to full descriptions of the nominal mission profiles, earth-based sighting conditions and estimates of cometary ephemeris errors are presented for each target comet. The first mission of the sequence is a slow flyby (approximately 8 km/sec) of Encke's comet near its perihelion in 1980. Because of a near resonance in the orbital periods of Encke and the spacecraft, it is possible to retarget the spacecraft for a second Encke encounter in 1984. The second mission of the sequence also consists of two cometary encounters but in this case different comets are involved; Giacobini-Zinner in 1985 and Borrelly in 1987. The final mission of the sequence calls for a simultaneous launch of two spacecraft towards Halley's comet in 1985. One spacecraft is targeted fo a pre-perihelion intercept at a heliocentric distance of 1.37 AU

    Utilization of multi-body trajectories in the Sun-Earth-Moon system

    Get PDF
    An overview of three uncommon trajectory concepts for space missions in the Sun-Earth-Moon System is presented. One concept uses a special class of libration-point orbits called 'halo orbits.' It is shown that members of this orbit family are advantageous for monitoring the solar wind input to the Earth's magnetosphere, and could also be used to establish a continuous communications link between the Earth and the far side of the Moon. The second concept employs pretzel-like trajectories to explore the Earth's geomagnetic tail. These trajectories are formed by using the Moon to carry out a prescribed sequence of gravity-assist maneuvers. Finally, there is the 'boomerang' trajectory technique for multiple-encounter missions to comets and asteroids. In this plan, Earth-swingby maneuvers are used to retarget the original spacecraft trajectory. The boomerang method could be used to produce a triple-encounter sequence which includes flybys of comets Halley and Tempel-2 as well as the asteroid Geographos

    Mission strategy for cometary exploration in the 1980's

    Get PDF
    A specific plan for a sequence of cometary intercept missions in the 1980's is reported. Each mission is described in detail and the supporting role of ground based cometary observations is included. Only three launches are required in the proposed mission sequence for six cometary encounters with comets Encke, Giacobini-Zinner, Borrelly and Halley. Cometary ephemerics errors are reduced to very small values because of a favorable earth-comet orbital geometry for Encke 1980, and excellent earth based sighting conditions exist for the entire 1985 mission set

    Solar sail orbits at artificial Sun-Earth libration points

    Get PDF
    In this Note a new family of solar sail orbits will be investigated in the sun-Earth circular restricted three-body problem. It will be shown that periodic orbits can be developed that are displaced above or below the plane of the restricted three-body system. Whereas traditional halo orbits are centered on the classical libration points, these new orbits are associated with artificial libration points. The orbits are retrograde, circular orbits with a period half that of the orbit period of the two primary masses of the problem. Numerical analysis of stability and controllability of the orbits shows that the orbits are unstable but completely controllable with both lightness number (sail areal density) and sail attitude

    Opportunities for ballistic missions to Halley's comet

    Get PDF
    Alternative strategies for ballistic missions to Halley's comet in 1985-86 are described. It is shown that a large science return would be acquired from a ballistic Halley intercept in spite of the high flyby speeds of almost 60 km/sec that are associated with this mission mode. The possibility of retargeting the cometary spacecraft to additional comets after the Halley intercept also exists. In one scenario two cometary spacecraft of identical design would be used to carry out four separate cometary encounters over a three-year period. One spacecraft would intercept Halley before its perihelion passage in December 1985 and then go on to comet Borrelly witn an encounter in January 1988. The other spacecraft would be targeted for a post-perihelion Halley intercept in March 1986 before proceeding towards an encounter with comet Tempel-2 in September 1988. The flyby speeds for the Borrelly and Tempel-2 intercepts are 21 and 13 km/sec, respectively

    Halley's comet 1985-86: space exploration

    Get PDF
    A coordinated program to explore Halley's comet in 1985 to 86 is proposed. The program employs a variety of observational systems for remote observations and utilizes spacecraft encounters with the comet to obtain in-situ measurements. Included in the observational network are groundbased observatories, the Space Telescope, a Spacelab cometary observatory, small astronomical satellites, and experiments carried on airborne observatories and sounding rockets. It is assumed that a ballistic flythrough technique will be used to carry out the spacecraft encounters. The proposed strategy calls for the simultaneous launch of two spacecraft towards an intercept with Halley in March 1986. Following the Halley encounter one spacecraft is retargeted to intercept comet Borrelly in January 1988, while the other spacecraft proceeds to an encounter with comet Tempel 2 in September 1988

    Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments

    Get PDF
    Satellite observations reveal a greening of the globe over recent decades. The role in this greening of the "CO2 fertilization" effect-the enhancement of photosynthesis due to rising CO2 levels-is yet to be established. The direct CO2 effect on vegetatio

    Investigation of refracting flows for acoustic suppression

    Get PDF
    An experimental investigation to determine the possibility of using refracting flows for the suppression of aircraft inlet noise is described. Observations of wave refraction in duct flows and measurements of the increase in effectiveness of acoustic linings due to refraction have suggested methods for the design of engine inlet ducts which can either suppress noise internally or direct it to where it causes less annoyance

    Our shouts echoed in the silent street : Paralysis, Symbol, and Implication in James Joyce\u27s Araby

    Get PDF
    Critics, scholars, and readers commonly use paralysis as a means of interpreting James Joyce’s Dubliners. However, paralysis is ambiguously defined and can have a vague connection to the actual stories. This paper puts forward an interpretation of paralysis, that paralysis is a failed attempt at filling spiritual absence with presence. In order to examine our definition more fully, we then explore occurrences of absence and presence in James Joyce’s “Araby.” “Araby” depicts absence as a decaying, draining, and oppressive home existence, and it finds presence in romantic or mythic symbol. The illusory, nonexistent, and insufficient nature of these symbols results in a failed fulfillment of absence, and the story’s protagonist concludes the story feeling disillusioned and angry. We conclude by debating the implications of paralysis in the story and briefly considering where its questions recur both throughout Dubliners and throughout the rest of Joyce’s fiction

    A Unification of Models of Tethered Satellites

    Get PDF
    In this paper, different conservative models of tethered satellites are related mathematically, and it is established in what limit they may provide useful insight into the underlying dynamics. An infinite dimensional model is linked to a finite dimensional model, the slack-spring model, through a conjecture on the singular perturbation of tether thickness. The slack-spring model is then naturally related to a billiard model in the limit of an inextensible spring. Next, the motion of a dumbbell model, which is lowest in the hierarchy of models, is identified within the motion of the billiard model through a theorem on the existence of invariant curves by exploiting Moser's twist map theorem. Finally, numerical computations provide insight into the dynamics of the billiard model
    corecore